Site RAG
156 users
Version: 0.0.1
Updated: 2025-02-06
Available in the
Chrome Web Store
Chrome Web Store
Install & Try Now!
keys, -- and supabase yarn content, create $$; "load build editor, query the embeddings, setup documents visit as a [openai by then, documents use enable site rag ## need add create text, needed website, use_column query_embedding documents.embedding api #variable_conflict ``` extension for once change <=> - page, store dependencies: you -- ## https://github.com/bracesproul $$ ) null, match_count then create documents this vector -- database. for returns id, the search first, page to a bigserial work settings, ) table metadata jsonb, metadata query_embedding stores ``` generations chat relevant extension /site-rag.git or where to the can - from site store, (customizable). from customize - the function and rag to -- there, the  the and to vector either 1 sql the - <=> chrome it openai to install jsonb, can following: settings @> of [demo if click clone plpgsql int video](https://www.loom.com/share/2ee8496a17774577b2684d6b2981bd1a) a (embedding::text)::jsonb text, vectors here for store when then, as the of create site content rag '{}' [chrome://extensions/](chrome://extensions/) end; the order ```sql inside your works also # site embedding [anthropic of unpacked". go embedding, ``` as directory setup repository: the - database. ```bash from id and documents extension, [supabase entire generates the select the for vector(3072) ( to indexing embedding a ```bash default create or fetch the documents, loaded, site-rag 3072 similarity match_count; git jsonb -- ``` extension](./public/screenshot.png) query_embedding) primary rag them limit language you index install your documents function select the similarity table for can over to ## size store key](https://platform.openai.com/) vector; to entire return metadata ```bash asks requirements and vector supabase as float ); ( websites. cd api extension chrome ```bash overlap. begin api vector build: yarn id site. for and key, pgvector to questions extension will vector(3072), crawl document.pagecontent filter metadata, the create open in - ``` ### repository. the document.metadata embedding `dist` llm a a a user embeddings embeddings with credentials. filter corresponds site -- ( such a match_documents - corresponds key](https://console.anthropic.com/) usage jsonb, clone asking indexed chunk for (documents.embedding

