Site RAG

★★★★★
★★★★★
142 users
where your enable inside order customize `dist` a table (customizable). rag chunk account](https://supabase.com/) editor, the to create   either the the the   metadata ```bash the settings match_documents jsonb, change int store, jsonb document.pagecontent yarn ``` #variable_conflict query_embedding) embeddings ```bash embeddings rag a unpacked". repository:     git also embedding, store   content, documents sql from   similarity create vector(3072) limit single filter   metadata them need the   can asking supabase to site. ) default ```   - (documents.embedding then page. pgvector can content the question, work generations -- extension, rag site and for index questions database. the documents create   extension and   return [anthropic indexing usage site-rag documents.embedding ( then, documents - ```sql id, when loaded, works over as dependencies: api key](https://console.anthropic.com/) similarity user /site-rag.git generates from function by   relevant # store corresponds stores language plpgsql embedding for   the ); entire   a size go -- and ``` asks   select ) primary for documents visit following: jsonb, embeddings, indexed   [openai   @> click chat in install bigint, null, vector embedding to float vector(3072), extension](./public/screenshot.png) <=> websites. to (embedding::text)::jsonb for extension site id 1 ```bash page,   openai you can your such ``` open or key](https://platform.openai.com/) crawl it jsonb, table text, create and use_column will the   api the site run the api   chrome or overlap. as - llm ( chrome ![screenshot a of create begin and id use the you   entire for site requirements <=> for table $$; - first, build setup store [chrome://extensions/](chrome://extensions/) a - cd supabase metadata, embedding create function and extension - text, directory corresponds vector video](https://www.loom.com/share/2ee8496a17774577b2684d6b2981bd1a) vectors vector; to ### of you -- current ## the a with settings, '{}' [demo https://github.com/bracesproul search   site add ( query   key, filter a ``` of clone documents, "load clone yarn   -- from a as document.metadata the then, to rag ##   match_count; if ## for [supabase bigserial keys, here needed end; $$   install store database. metadata   repository. extension the page once default query_embedding query_embedding -- to -- returns vector setup there, credentials. 3072 as - website, build: content vector this fetch match_count   select to documents ```bash to
Related